reslr_mcmc
.R/summary.reslr_output.R
summary.reslr_output.Rd
A warning message will appear if the model has not been converge. If this appears the user is recommended to re-run the model and alter the reslr_mcmc
function default iteration and MCMC settings. Also, it provides high-level summaries of the estimated parameters.
# S3 method for reslr_output
summary(object, ...)
Output object from the reslr_mcmc
Not in use
A list containing convergence diagnostics and parameter estimates for the output.
# \donttest{
data <- NAACproxydata %>% dplyr::filter(Site == "Cedar Island")
input_data <- reslr_load(data = data)
jags_output <- reslr_mcmc(input_data = input_data, model_type = "eiv_slr_t")
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 208
#> Unobserved stochastic nodes: 107
#> Total graph size: 1003
#>
#> Initializing model
#>
summary(object = jags_output)# }
#> No convergence issues detected.
#> # A tibble: 3 × 7
#> variable mean sd mad q5 q95 rhat
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 alpha -1.99 0.0168 0.0166 -2.02 -1.96 1.00
#> 2 beta 0.823 0.0126 0.0126 0.803 0.844 1.00
#> 3 sigma_y 0.0662 0.00936 0.00944 0.0515 0.0816 1.00